VAEMixIn#
Mixin class for Variational Autoencoder (VAE) operations.
This class provides methods for configuring encoder and decoder modules, performing forward pass, and optimization steps including pre-training.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.reconstruction_loss#
Reconstruction loss function.
- Type:
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__init__()#
Initialize the VAEMixIn object.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn._configure_encoder()#
Configure the encoder module.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn._configure_decoder()#
Configure the decoder module.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn._configure_torch_modules()#
Configure torch modules including encoder, decoder, and differential equation.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn._configure_lightning_model()#
Configure lightning model with optimizers and schedulers.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.encode()#
Encode input data into latent space.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.decode()#
Decode latent space into output data.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.forward()#
Perform forward pass integrating in latent space.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.pretrain_step()#
Perform a single pre-training step.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.step()#
Perform a single optimization step.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__repr__()#
Return the representation of the class.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__delattr__(self, name, /)#
Implement delattr(self, name).
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__dir__(self, /)#
Default dir() implementation.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__eq__(self, value, /)#
Return self==value.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__format__(self, format_spec, /)#
Default object formatter.
Return str(self) if format_spec is empty. Raise TypeError otherwise.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__ge__(self, value, /)#
Return self>=value.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__getattribute__(self, name, /)#
Return getattr(self, name).
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__getstate__(self, /)#
Helper for pickle.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__gt__(self, value, /)#
Return self>value.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__hash__(self, /)#
Return hash(self).
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__init_subclass__()#
This method is called when a class is subclassed.
The default implementation does nothing. It may be overridden to extend subclasses.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__le__(self, value, /)#
Return self<=value.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__lt__(self, value, /)#
Return self<value.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__ne__(self, value, /)#
Return self!=value.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__new__(*args, **kwargs)#
Create and return a new object. See help(type) for accurate signature.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__reduce__(self, /)#
Helper for pickle.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__reduce_ex__(self, protocol, /)#
Helper for pickle.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__setattr__(self, name, value, /)#
Implement setattr(self, name, value).
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__sizeof__(self, /)#
Size of object in memory, in bytes.
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__str__(self, /)#
Return str(self).
- scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__subclasshook__()#
Abstract classes can override this to customize issubclass().
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).