VAEMixIn#

Mixin class for Variational Autoencoder (VAE) operations.

This class provides methods for configuring encoder and decoder modules, performing forward pass, and optimization steps including pre-training.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.reconstruction_loss#

Reconstruction loss function.

Type:

Module

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__init__()#

Initialize the VAEMixIn object.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn._configure_encoder()#

Configure the encoder module.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn._configure_decoder()#

Configure the decoder module.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn._configure_torch_modules()#

Configure torch modules including encoder, decoder, and differential equation.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn._configure_lightning_model()#

Configure lightning model with optimizers and schedulers.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.encode()#

Encode input data into latent space.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.decode()#

Decode latent space into output data.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.forward()#

Perform forward pass integrating in latent space.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.pretrain_step()#

Perform a single pre-training step.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.step()#

Perform a single optimization step.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__repr__()#

Return the representation of the class.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__delattr__(self, name, /)#

Implement delattr(self, name).

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__dir__(self, /)#

Default dir() implementation.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__eq__(self, value, /)#

Return self==value.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__format__(self, format_spec, /)#

Default object formatter.

Return str(self) if format_spec is empty. Raise TypeError otherwise.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__ge__(self, value, /)#

Return self>=value.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__getattribute__(self, name, /)#

Return getattr(self, name).

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__getstate__(self, /)#

Helper for pickle.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__gt__(self, value, /)#

Return self>value.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__hash__(self, /)#

Return hash(self).

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__init_subclass__()#

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__le__(self, value, /)#

Return self<=value.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__lt__(self, value, /)#

Return self<value.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__ne__(self, value, /)#

Return self!=value.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__new__(*args, **kwargs)#

Create and return a new object. See help(type) for accurate signature.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__reduce__(self, /)#

Helper for pickle.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__reduce_ex__(self, protocol, /)#

Helper for pickle.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__setattr__(self, name, value, /)#

Implement setattr(self, name, value).

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__sizeof__(self, /)#

Size of object in memory, in bytes.

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__str__(self, /)#

Return str(self).

scdiffeq.core.lightning_models.mix_ins._vae_mix_in.VAEMixIn.__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).